make the same progress.
So a typical location in the universe is amenable to the open-ended creation of knowledge. And therefore so are almost all other kinds of environment, since they have more matter, more energy and easier access to evidence than intergalactic space. The thought experiment considered almost the worst possible case. Perhaps the laws of physics do not allow knowledge-creation inside, say, the jet of a quasar. Or perhaps they do. But either way, in the universe at large, knowledge-friendliness is the rule, not the exception. That is to say, the rule is person-friendliness to people who have the relevant knowledge. Death is the rule for those who do not. These are the same rules that prevailed in the Great Rift Valley from whence we came, and have prevailed ever since.
Oddly enough, that quixotic space station in our thought experiment is none other than the ‘generation ship’ in the Spaceship Earth metaphor – except that we have removed the unrealistic assumption that the inhabitants never improve it. Hence presumably they have long since solved the problem of how to avoid dying, and so ‘generations’ are no longer essential to the way their ship works. In any case, with hindsight, a generation ship was a poor choice for dramatizing the claim that the human condition is fragile and dependent on support from an unaltered biosphere, for that claim is contradicted by the very possibility of such a spaceship. If it is possible to live indefinitely in a spaceship in space, then it would be much more possible to use the same technology to live on the surface of the Earth – and to make continuing progress which would make it ever easier. It would make little practical difference whether the biosphere had been ruined or not. Whether or not it could support any other species, it could certainly accommodate people – including humans – if they had the right knowledge.
Now I can turn to the significance of knowledge – and therefore of people – in the cosmic scheme of things.
Many things are more obviously significant than people. Space and time are significant because they appear in almost all explanations of other physical phenomena. Similarly, electrons and atoms are significant. Humans seem to have no place in that exalted company. Our history and politics, our science, art and philosophy, our aspirations and moral values – all these are tiny side effects of a supernova explosion a few billion years ago, which could be extinguished tomorrow by another such explosion. Supernovae, too, are moderately significant in the cosmic scheme of things. But it seems that one can explain everything about supernovae, and almost everything else, without ever mentioning people or knowledge at all.
However, that is merely another parochial error, due to our current, untypical, vantage point in an Enlightenment that is mere centuries old. In the longer run, humans may colonize other solar systems and, by increasing their knowledge, control ever more powerful physical processes. If people ever choose to live near a star that is capable of exploding, they may well wish to prevent such an explosion – probably by removing some of the material from the star. Such a project would use many orders of magnitude more energy than humans currently control, and more advanced technology as well. But it is a fundamentally simple task, not requiring any steps that are even close to limits imposed by the laws of physics. So, with the right knowledge, it could be achieved. Indeed, for all we know, engineers elsewhere in the universe are already achieving it routinely. And consequently it is not true that the attributes of supernovae in general are independent of the presence or absence of people, or of what those people know and intend.
More generally, if we want to predict what a star will do, we first have to guess whether there are any people near it, and, if so, what knowledge they may have and what they may want to achieve. Outside our parochial perspective, astrophysics is incomplete without a theory of people, just as it is incomplete without a theory of gravity or nuclear reactions. Note that this conclusion does not depend on the assumption that humans, or anyone, will colonize the galaxy and take control of any supernovae: the assumption that they will not is equally a theory about the future behaviour of knowledge. Knowledge is a significant phenomenon in the universe, because to make almost any prediction about astrophysics one must take a position about