audience comprised about eighty young men and women from Europe, mostly graduate students in biology and a few professors. Berg gave an informal lecture—“a rap session,” he called it—presenting his data on gene chimeras, recombinant DNA, and the production of the virus-bacteria hybrids.
The students were electrified. Berg was inundated with questions, as he had expected—but the direction of the conversation surprised him. At Janet Mertz’s presentation at Cold Spring Harbor in 1971, the biggest concern had been safety: How could Berg or Mertz guarantee that their genetic chimeras would not unleash biological chaos on humans? In Sicily, in contrast, the conversation turned quickly to politics, culture, and ethics. What about the “spectre of genetic engineering in humans, behavior control?” Berg recalled. “What if we could cure genetic diseases?” the students asked. “[Or] program people’s eye color? Intelligence? Height? . . . What would the implications be for humans and human societies?”
Who would ensure that genetic technologies would not be seized and perverted by powerful forces—as once before on that continent? Berg had obviously stoked an old fire. In America, the prospect of gene manipulation had principally raised the specter of future biological dangers. In Italy—not more than a few hundred miles from the sites of the former Nazi extermination camps—it was the moral hazards of genetics, more than the biohazards of genes, that haunted the conversation.
That evening, a German student gathered an impromptu group of his peers to continue the debate. They climbed the ramparts of the Venus Castle and looked out toward the darkening coast, with the lights of the city blinking below. Berg and the students stayed up late into the night for a second session, drinking beers and talking about natural and unnatural conceptions—“the beginning of a new era . . . [its] possible hazards, and the prospects of genetic engineering.”
In January 1973, a few months after the Erice trip, Berg decided to organize a small conference in California to address the growing concerns about gene-manipulation technologies. The meeting was held at the Pacific Groves Conference Center at Asilomar, a sprawling, wind-buffeted complex of buildings on the edge of the ocean near Monterey Bay, about eighty miles from Stanford. Scientists from all disciplines—virologists, geneticists, biochemists, microbiologists—attended. “Asilomar I,” as Berg would later call the meeting, generated enormous interest, but few recommendations. Much of the meeting focused on biosafety issues. The use of SV40 and other human viruses was hotly discussed. “Back then, we were still using our mouths to pipette viruses and chemicals,” Berg told me. Berg’s assistant Marianne Dieckmann once recalled a student who had accidentally flecked some liquid onto the tip of a cigarette (it was not unusual, for that matter, to have half-lit cigarettes, smoldering in ashtrays, strewn across the lab). The student had just shrugged and continued to smoke, with the droplet of virus disintegrating into ash.
The Asilomar conference produced an important book, Biohazards in Biological Research, but its larger conclusion was in the negative. As Berg described it, “What came out of it, frankly, was the recognition of how little we know.”
Concerns about gene cloning were further inflamed in the summer of 1973 when Boyer and Cohen presented their experiments on bacterial gene hybrids at another conference. At Stanford, meanwhile, Berg was being flooded with requests from researchers around the world asking for gene recombination reagents. One researcher from Chicago proposed inserting genes of the highly pathogenic human herpes virus into bacterial cells, thereby creating a human intestinal bacterium loaded with a lethal toxin gene, ostensibly to study the toxicity of herpes virus genes. (Berg politely declined.) Antibiotic-resistance genes were routinely being swapped between bacteria. Genes were being shuffled between species and genera, leaping across a million years of evolutionary rift as if casually stepping over thin lines in sand. Noting the growing swirl of uncertainties, the National Academy of Sciences called on Berg to lead a study panel on gene recombination.
The panel—eight scientists, including Berg, Watson, David Baltimore, and Norton Zinder—met at MIT, in Boston, on a chilly spring afternoon in April 1973. They instantly got to work, brainstorming possible mechanisms to control and regulate gene cloning. Baltimore suggested the development of “ ‘safe’ viruses, plasmids and bacteria, which would be crippled”—and thereby be unable to cause disease. But even that safety measure was not foolproof. Who would ensure that “crippled” viruses would remain permanently crippled? Viruses and bacteria were, after all, not passive, inert objects. Even within laboratory environments, they were living, evolving, moving targets. One mutation—and a previously disabled bacterium