Range - David Epstein Page 0,40
celestial bodies pulled one another, and larger bodies had more pull. That led him to claim (correctly) that the moon influenced tides on Earth. Galileo, the embodiment of bold truths, mocked him for the ridiculous idea of “the moon’s dominion over the waters.”
Kepler’s intellectual wanderings traced a staggering journey, from planets imbued with souls and riding on interlocking crystalline spheres in perfect circles around the stationary Earth, to his illumination of the laws of planetary motion, which showed that the planets move in ellipses that are predictable based on their relation to the sun.
More important, Kepler invented astrophysics. He did not inherit an idea of universal physical forces. There was no concept of gravity as a force, and he had no notion of momentum that keeps the planets in motion. Analogies were all he had. He became the first discoverer of causal physical laws for phenomena in the heavens, and he realized it. “Ye physicists,” he wrote when he published his laws of planetary motion, “prick your ears, for now we are going to invade your territory.” The title of his magnum opus: A New Astronomy Based upon Causes.
In an age when alchemy was still a common approach to natural phenomena, Kepler filled the universe with invisible forces acting all around us, and helped usher in the Scientific Revolution. His fastidious documentation of every meandering path his brain blazed is one of the great records of a mind undergoing creative transformation. It is a truism to say that Kepler thought outside the box. But what he really did, whenever he was stuck, was to think entirely outside the domain. He left a brightly lit trail of his favorite tools for doing that, the ones that allowed him to cast outside eyes upon wisdom his peers simply accepted. “I especially love analogies,” he wrote, “my most faithful masters, acquainted with all the secrets of nature. . . . One should make great use of them.”
* * *
• • •
Mention Kepler if you want to get Northwestern University psychologist Dedre Gentner excited. She gesticulates. Her tortoiseshell glasses bob up and down. She is probably the world’s foremost authority on analogical thinking. Deep analogical thinking is the practice of recognizing conceptual similarities in multiple domains or scenarios that may seem to have little in common on the surface. It is a powerful tool for solving wicked problems, and Kepler was an analogy addict, so Gentner is naturally very fond of him. When she mentions a trivial historical detail about him that might be misunderstood by modern readers, she suggests that maybe it’s best not to publish it as it might make him look bad, though he has been dead for nearly four hundred years.
“In my opinion,” Gentner told me, “our ability to think relationally is one of the reasons we’re running the planet. Relations are really hard for other species.” Analogical thinking takes the new and makes it familiar, or takes the familiar and puts it in a new light, and allows humans to reason through problems they have never seen in unfamiliar contexts. It also allows us to understand that which we cannot see at all. Students might learn about the motion of molecules by analogy to billiard-ball collisions; principles of electricity can be understood with analogies to water flow through plumbing. Concepts from biology serve as analogies to inform the cutting edge of artificial intelligence: “neural networks” that learn how to identify images from examples (when you search cat pictures, for instance) were conceived as akin to the neurons of the brain, and “genetic algorithms” are conceptually based on evolution by natural selection—solutions are tried, evaluated, and the more successful solutions pass on properties to the next round of solutions, ad infinitum. It is the furthest extension of the type of thinking that was foreign to Luria’s premodern villagers, whose problem solving depended on direct experience.
Kepler was facing a problem not just new to himself, but to all humanity. There was no experience database to draw on. To investigate whether he should be the first ever to propose “action at a distance” in the heavens (a mysterious power invisibly traversing space and then appearing at its target), he turned to analogy (odor, heat, light) to consider whether it was conceptually possible. He followed that up with a litany of distant analogies (magnets, boats) to think through the problem.
Most problems, of course, are not new, so we can rely on what Gentner calls “surface” analogies from our own experience. “Most of the