Range - David Epstein Page 0,36
professors whose instruction most strongly boosted student performance on the Calculus I exam, and who got sterling student evaluation ratings. Another group of professors consistently added less to student performance on the exam, and students judged them more harshly in evaluations. But when the economists looked at another, longer-term measure of teacher value added—how those students did on subsequent math and engineering courses that required Calculus I as a prerequisite—the results were stunning. The Calculus I teachers who were the best at promoting student overachievement in their own class were somehow not great for their students in the long run. “Professors who excel at promoting contemporaneous student achievement,” the economists wrote, “on average, harm the subsequent performance of their students in more advanced classes.” What looked like a head start evaporated.
The economists suggested that the professors who caused short-term struggle but long-term gains were facilitating “deep learning” by making connections. They “broaden the curriculum and produce students with a deeper understanding of the material.” It also made their courses more difficult and frustrating, as evidenced by both the students’ lower Calculus I exam scores and their harsher evaluations of their instructors. And vice versa. The calculus professor who ranked dead last in deep learning out of the hundred studied—that is, his students underperformed in subsequent classes—was sixth in student evaluations, and seventh in student performance during his own class. Students evaluated their instructors based on how they performed on tests right now—a poor measure of how well the teachers set them up for later development—so they gave the best marks to professors who provided them with the least long-term benefit. The economists concluded that students were actually selectively punishing the teachers who provided them the most long-term benefit. Tellingly, Calculus I students whose teachers had fewer qualifications and less experience did better in that class, while the students of more experienced and qualified teachers struggled in Calculus I but did better in subsequent courses.
A similar study was conducted at Italy’s Bocconi University, on twelve hundred first-year students who were randomized into introductory course sections in management, economics, or law, and then the courses that followed them in a prescribed sequence over four years. It showed precisely the same pattern. Teachers who guided students to overachievement in their own course were rated highly, and undermined student performance in the long run.
Psychologist Robert Bjork first used the phrase “desirable difficulties” in 1994. Twenty years later, he and a coauthor concluded a book chapter on applying the science of learning like this: “Above all, the most basic message is that teachers and students must avoid interpreting current performance as learning. Good performance on a test during the learning process can indicate mastery, but learners and teachers need to be aware that such performance will often index, instead, fast but fleeting progress.”
* * *
• • •
Here is the bright side: over the past forty years, Americans have increasingly said in national surveys that current students are getting a worse education than they themselves did, and they have been wrong. Scores from the National Assessment of Educational Progress, “the nation’s report card,” have risen steadily since the 1970s. Unquestionably, students today have mastery of basic skills that is superior to students of the past. School has not gotten worse. The goals of education have just become loftier.
Education economist Greg Duncan, one of the most influential education professors in the world, has documented this trend. Focusing on “using procedures” problems worked well forty years ago when the world was flush with jobs that paid middle-class salaries for procedural tasks, like typing, filing, and working on an assembly line. “Increasingly,” according to Duncan, “jobs that pay well require employees to be able to solve unexpected problems, often while working in groups. . . . These shifts in labor force demands have in turn put new and increasingly stringent demands on schools.”
Here is a math question from the early 1980s basic skills test of all public school sixth graders in Massachusetts:
Carol can ride her bike 10 miles per hour. If Carol rides her bike to the store, how long will it take?
To solve this problem, you would need to know:
A) How far it is to the store.
B) What kind of bike Carol has.
C) What time Carol will leave.
D) How much Carol has to spend.
And here is a question Massachusetts sixth graders got in 2011:
Paige, Rosie, and Cheryl each spent exactly $9.00 at the same snack bar.
Paige bought 3 bags of peanuts.
Rosie bought 2 bags of peanuts and