The Beginning of Infinity - By David Deutsch Page 0,18
overwhelm us; it is our home, and our resource. The bigger the better.
But then there is the philosophical magnitude of a cluster of galaxies. As I moved the cross-hairs to one nondescript galaxy after another, clicking at what I guessed to be the centre of each, some whimsical thoughts occurred to me. I wondered whether I would be the first and last human being ever to pay conscious attention to a particular galaxy. I was looking at the blurry object for only a few seconds, yet it might be laden with meaning for all I knew. It contains billions of planets. Each planet is a world. Each has its own unique history – sunrises and sunsets; storms, seasons; in some cases continents, oceans, earthquakes, rivers. Were any of those worlds inhabited? Were there astronomers there? Unless they were an exceedingly ancient, and advanced, civilization, those people would never have travelled outside their galaxy. So they would never have seen what it looked like from my perspective – though they might know from theory. Were any of them at that moment staring at the Milky Way, asking the same questions about us as I was about them? If so, then they were looking at our galaxy as it was when the most advanced forms of life on Earth were fish.
The computers that nowadays catalogue galaxies may or may not do it better than the graduate students used to. But they certainly do not experience such reflections as a result. I mention this because I often hear scientific research described in rather a bleak way, suggesting that it is mostly mindless toil. The inventor Thomas Edison once said, ‘None of my inventions came by accident. I see a worthwhile need to be met and I make trial after trial until it comes. What it boils down to is one per cent inspiration and ninety-nine per cent perspiration.’ Some people say the same about theoretical research, where the ‘perspiration’ phase is supposedly uncreative intellectual work such as doing algebra or translating algorithms into computer programs. But the fact that a computer or a robot can perform a task mindlessly does not imply that it is mindless when scientists do it. After all, computers play chess mindlessly – by exhaustively searching the consequences of all possible moves – but humans achieve a similar-looking functionality in a completely different way, by creative and enjoyable thought. Perhaps those galaxy-cataloguing computer programs were written by those same graduate students, distilling what they had learned into reproducible algorithms. Which means that they must have learned something while performing a task that a computer performs without learning anything. But, more profoundly, I expect that Edison was misinterpreting his own experience. A trial that fails is still fun. A repetitive experiment is not repetitive if one is thinking about the ideas that it is testing and the reality that it is investigating. That galaxy project was intended to discover whether ‘dark matter’ (see the next chapter) really exists – and it succeeded. If Edison, or those graduate students, or any scientific researcher engaged upon the ‘perspiration’ phase of discovery, had really been doing it mindlessly, they would be missing most of the fun – which is also what largely powers that ‘one per cent inspiration’.
As I reached one particularly ambiguous image I asked my hosts, ‘Is that a galaxy or a star?’
‘Neither,’ was the reply. ‘That’s just a defect in the photographic emulsion.’
The drastic mental gear change made me laugh. My grandiose speculations about the deep meaning of what I was seeing had turned out to be, in regard to this particular object, about nothing at all: suddenly there were no astronomers in that image, no rivers or earthquakes. They had disappeared in a puff of imagination. I had overestimated the mass of what I was looking at by some fifty powers of ten. What I had taken to be the largest object I had ever seen, and the most distant in space and time, was in reality just a speck barely visible without a microscope, within arm’s reach. How easily, and how thoroughly, one can be misled.
But wait. Was I ever looking at a galaxy? All the other blobs were in fact microscopic smudges of silver too. If I misclassified the cause of one of them, because it looked too like the others, why was that such a big error?
Because an error in experimental science is a mistake about the cause of something. Like an accurate observation, it is