The Beginning of Infinity - By David Deutsch Page 0,145

speed of light or the charge on an electron are different. There is, however, a sense in which different laws of physics appear to be true for a period in some histories, because of a sequence of ‘unlikely accidents’. (There may also be universes in which there are different laws of physics, as required in anthropic explanations of fine-tuning. But as yet there is no viable theory of such a multiverse.)

Imagine a single photon from a starship’s communication laser, heading towards Earth. Like the cosmic ray, it arrives all over the surface, in different histories. In each history, only one atom will absorb the photon and the rest will initially be completely unaffected. A receiver for such communications would then detect the relatively large, discrete change undergone by such an atom. An important consequence for the construction of measuring devices (including eyes) is that no matter how far away the source is, the kick given to an atom by an arriving photon is always the same: it is just that the weaker the signal is, the fewer kicks there are. If this were not so – for instance, if classical physics were true – weak signals would be much more easily swamped by random local noise. This is the same as the advantage of digital over analogue information processing that I discussed in Chapter 6.

Some of my own research in physics has been concerned with the theory of quantum computers. These are computers in which the information-carrying variables have been protected by a variety of means from becoming entangled with their surroundings. This allows a new mode of computation in which the flow of information is not confined to a single history. In one type of quantum computation, enormous numbers of different computations, taking place simultaneously, can affect each other and hence contribute to the output of a computation. This is known as quantum parallelism.

In a typical quantum computation, individual bits of information are represented in physical objects known as ‘qubits’ – quantum bits – of which there is a large variety of physical implementations but always with two essential features. First, each qubit has a variable that can take one of two discrete values, and, second, special measures are taken to protect the qubits from entanglement – such as cooling them to temperatures close to absolute zero. A typical algorithm using quantum parallelism begins by causing the information-carrying variables in some of the qubits to acquire both their values simultaneously. Consequently, regarding those qubits as a register representing (say) a number, the number of separate instances of the register as a whole is exponentially large: two to the power of the number of qubits. Then, for a period, classical computations are performed, during which waves of differentiation spread to some of the other qubits – but no further, because of the special measures that prevent this. Hence, information is processed separately in each of that vast number of autonomous histories. Finally, an interference process involving all the affected qubits combines the information in those histories into a single history. Because of the intervening computation, which has processed the information, the final state is not the same as the initial one, as in the simple interference experiment I discussed above, namely , but is some function of it, like this:

A typical quantum computation. Y1 . . . Ymany are intermediate results that depend on the input X. All of them are needed to compute the output f(X) efficiently.

Just as the starship crew members could achieve the effect of large amounts of computation by sharing information with their doppelgängers computing the same function on different inputs, so an algorithm that makes use of quantum parallelism does the same. But, while the fictional effect is limited only by starship regulations that we may invent to suit the plot, quantum computers are limited by the laws of physics that govern quantum interference. Only certain types of parallel computation can be performed with the help of the multiverse in this way. They are the ones for which the mathematics of quantum interference happens to be just right for combining into a single history the information that is needed for the final result.

In such computations, a quantum computer with only a few hundred qubits could perform far more computations in parallel than there are atoms in the visible universe. At the time of writing, quantum computers with about ten qubits have been constructed. ‘Scaling’ the technology to larger numbers is a tremendous challenge for quantum

readonlinefreenovel.com Copyright 2016 - 2024