The Beginning of Infinity - By David Deutsch Page 0,12
what terminology you use, so long as it does not lead you to conclude that there is something worthwhile about the Persephone myth, or the prophet’s apocalyptic theory or the gambler’s delusion, just because is it testable. Nor is a person capable of making progress merely by virtue of being willing to drop a theory when it is refuted: one must also be seeking a better explanation of the relevant phenomena. That is the scientific frame of mind.
As the physicist Richard Feynman said, ‘Science is what we have learned about how to keep from fooling ourselves.’ By adopting easily variable explanations, the gambler and prophet are ensuring that they will be able to continue fooling themselves no matter what happens. Just as thoroughly as if they had adopted untestable theories, they are insulating themselves from facing evidence that they are mistaken about what is really there in the physical world.
The quest for good explanations is, I believe, the basic regulating principle not only of science, but of the Enlightenment generally. It is the feature that distinguishes those approaches to knowledge from all others, and it implies all those other conditions for scientific progress I have discussed: It trivially implies that prediction alone is insufficient. Somewhat less trivially, it leads to the rejection of authority, because if we adopt a theory on authority, that means that we would also have accepted a range of different theories on authority. And hence it also implies the need for a tradition of criticism. It also implies a methodological rule – a criterion for reality – namely that we should conclude that a particular thing is real if and only if it figures in our best explanation of something.
Although the pioneers of the Enlightenment and of the scientific revolution did not put it this way, seeking good explanations was (and remains) the spirit of the age. This is how they began to think. It is what they began to do, systematically for the first time. It is what made that momentous difference to the rate of progress of all kinds.
Long before the Enlightenment, there were individuals who sought good explanations. Indeed, my discussion here suggests that all progress then, as now, was due to such people. But in most ages they lacked contact with a tradition of criticism in which others could carry on their ideas, and so created little that left any trace for us to detect. We do know of sporadic traditions of good-explanation-seeking in narrowly defined fields, such as geometry, and even short-lived traditions of criticism – mini-enlightenments – which were tragically snuffed out, as I shall describe in Chapter 9. But the sea change in the values and patterns of thinking of a whole community of thinkers, which brought about a sustained and accelerating creation of knowledge, happened only once in history, with the Enlightenment and its scientific revolution. An entire political, moral, economic and intellectual culture – roughly what is now called ‘the West’ – grew around the values entailed by the quest for good explanations, such as tolerance of dissent, openness to change, distrust of dogmatism and authority, and the aspiration to progress both by individuals and for the culture as a whole. And the progress made by that multifaceted culture, in turn, promoted those values – though, as I shall explain in Chapter 15, they are nowhere close to being fully implemented.
Now consider the true explanation of seasons. It is that the Earth’s axis of rotation is tilted relative to the plane of its orbit around the sun. Hence for half of each year the northern hemisphere is tilted towards the sun while the southern hemisphere is tilted away, and for the other half it is the other way around. Whenever the sun’s rays are falling vertically in one hemisphere (thus providing more heat per unit area of the surface) they are falling obliquely in the other (thus providing less).
The true explanation of seasons (not to scale!)
That is a good explanation – hard to vary, because all its details play a functional role. For instance, we know – and can test independently of our experience of seasons – that surfaces tilted away from radiant heat are heated less than when they are facing it, and that a spinning sphere in space points in a constant direction. And we can explain why, in terms of theories of geometry, heat and mechanics. Also, the same tilt appears in our explanation of where the sun appears relative to the horizon at